Information for COVID-19 vaccination programme

Healthcare Practitioners

COVID-19 immunisation
Project yourself
Acknowledgement

The information in this document was adapted from a variety of COVID-19 resources produced by Public Health England (PHE). PHE granted permission to use their materials in Northern Ireland, this is gratefully acknowledged.

Document information

The information in this document was correct at time of publication. As COVID-19 is an evolving disease, a lot is still being learned about both the disease and the vaccines that have been developed to prevent it, and the knowledge base is still being developed. For this reason, some of the information may change. Updates will be made to this document as new information becomes available. Please use the online version to ensure you are accessing the latest version.

This document includes specific information about the storage and preparation of the COVID-19 mRNA Vaccine BNT162b2 (Pfizer-BioNTech and the COVID-19 Vaccine AstraZeneca), following the authorisation for temporary supply by the UK Department of Health and Social Care and the Medicines and Healthcare products Regulatory Agency (MHRA) given on 2 December 2020 and 30 December 2020, respectively.

This document has been updated to provide information about the storage and preparation of the COVID-19 Vaccine Moderna, given authorisation for temporary supply on 8 January 2021.

The guidance will be updated as more information about these vaccines becomes available and will include other vaccines as they become available for use. As each vaccine is presented, stored and prepared differently, immunisers must ensure they are familiar with the specific details of the vaccine that they are working with.
COVID-19 disease

COVID-19 is an emerging disease and complications can be severe and fatal, particularly for those in risk groups.

What are the symptoms of COVID-19?

Asymptomatic infection has been reported but those who do develop symptoms report a range of symptoms, including fever, a new and continuous cough, anosmia (loss of smell) and ageusia (loss of taste), shortness of breath, fatigue and loss of appetite. Other symptoms include: myalgia, sore throat, headache, nasal congestion, diarrhoea, nausea and vomiting.

Around 40% of people who develop symptoms report mild symptoms and typically present without hypoxia or pneumonia. A further 40% present with moderate symptoms, which may include non-severe pneumonia, and 15% present with severe pneumonia and significant disease.

Critical disease can lead to life threatening complications and is reported in around 5% of cases. Patients with critical disease may experience acute respiratory distress syndrome (ARDS), sepsis, septic shock, cardiac disease, thromboembolic events such as pulmonary embolism and multi-organ failure.

Evidence is growing that the longer-term consequences of more severe complications associated with the inflammatory response may be considerable in those who experience critical and life-threatening illness. Rare neurological and psychiatric complications, which can also occur in patients without respiratory symptoms, include stroke, meningo-encephalitis, delirium, encephalopathy, anxiety, depression and sleep disturbances.

Fewer than 5% of SARS-CoV-2 infection cases are amongst children and in general they appear to experience milder symptoms than adults. Further evidence is needed about the association between underlying conditions and risk of COVID-19 disease in children. A rare presentation of multisystem inflammatory syndrome temporarily associated with COVID-19 in children and adolescents has been noted.

How is COVID-19 spread?

SARS-CoV-2 virus is primarily transmitted between people through respiratory droplets expelled from the nose and mouth through coughing, sneezing or speaking or when people touch their eyes, nose or mouth following contact with contaminated objects and surfaces or direct human contact.

Who is affected by COVID-19?

Increasing age and male gender are thought to be significant risk factors for severe disease and infection fatality ratios are highest in the oldest age groups. Comorbidities such as diabetes and severe asthma are associated with an increased risk of death and obesity and other underlying health conditions can increase the risk for some people. Further information on high risk groups (those who are clinically extremely vulnerable) and moderate risk groups (those who are clinically vulnerable) can be found on the nidirect website Coronavirus (COVID-19): definitions of ‘clinically extremely vulnerable’ and ‘vulnerable’. Deprivation and being from a black, ethnic and minority group also results in an increased risk of death from COVID-19. Additionally, health and social care workers are at increased risk of acquiring infection in their work setting and they may potentially transmit the virus to their families and to those in their care.
COVID-19 vaccination programme

What is the aim of the vaccination programme?

The aim of the COVID-19 vaccination programme is to protect those who are at most risk from serious illness or death from COVID-19 and to protect the health and social care staff and system.

How was the vaccine developed?

Over 280 different COVID-19 vaccines are in various stages of development. Some have been made using existing vaccine technology, whilst others have been made using completely new approaches. While it normally takes several years to develop a vaccine, scientists across the world have worked collaboratively and rapidly to achieve the same amount of work in a few months in order to make a safe and effective vaccine available as soon as possible. Although clinical trials have been carried out more rapidly than they have for other vaccines, this has been achieved by conducting some of the steps in parallel rather than sequentially and vaccine safety has not been compromised. The vaccine trials have been subject to all of the usual strict trial and regulatory requirements.

There is more information about COVID-19 vaccines in development, at https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/

This document will discuss the first COVID-19 vaccines to be authorised for supply in the UK. The guidance will be updated as more information about these vaccines becomes available and may include other vaccines as they are authorised for use in the UK.

As each vaccine will be presented and prepared differently, immunisers must ensure they are familiar with the specific details of the vaccine that they will be working with.

How long does the vaccine offer protection?

As COVID-19 vaccines have only been given in clinical trials in recent months, there is currently no data available to describe how long protection from vaccination will last. Post-authorisation surveillance and continued follow-up of trial participants may indicate the need for booster doses but they are not currently recommended.
COVID-19 vaccination eligibility

Vaccine priority groups – provisional list

The objectives of the COVID immunisation programme are to protect those who are at highest risk from serious illness or death. The Joint Committee on Vaccination and Immunisation (JCVI) therefore considered the available epidemiological, microbiological and clinical information on the impact of COVID-19 in the UK and provided the Government and Devolved Administrations with advice to support the development of a vaccine strategy. This is available at https://www.gov.uk/government/publications/priority-groups-for-coronavirus-covid-19-vaccination-advice-from-the-jcvi-30-december-2020

Full details on vaccine eligibility, with detail on the at-risk conditions and the eligibility of health and social care and laboratory staff groups, are included in the Green Book Covid-19 chapter.

Can pregnant women receive the vaccine?

Although clinical trials on the use of COVID-19 vaccines during pregnancy are not advanced, the available data do not indicate any harm to pregnancy. JCVI has therefore advised that women who are pregnant should be offered vaccination at the same time as non-pregnant women, based on their age and clinical risk group. There is now extensive post-marketing experience of the use of the Pfizer BioNTech and Moderna vaccines in the USA with no safety signals so far (https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/vsafepregnancyregistry.html). These vaccines are therefore the preferred vaccines to offer to pregnant women. Clinicians should discuss the risks and benefits of vaccination with the woman, who should be told about the limited evidence of safety for the vaccine in pregnancy.

Routine questioning about last menstrual period and/or pregnancy testing is not required before offering the vaccine. Women who are planning pregnancy or in the immediate postpartum can be vaccinated with a suitable product for their age and clinical risk group.

If a woman finds out she is pregnant after she has started a course of vaccine, she may complete vaccination during pregnancy using the same vaccine product (unless contraindicated). Alternatively, vaccination should be offered as soon as possible after pregnancy.

Can breastfeeding women receive the vaccine?

There is no known risk associated with being given a non-live vaccine whilst breastfeeding. JCVI advises that breastfeeding women may be offered any suitable COVID-19 vaccine. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for immunisation against COVID-19; at the same time, women should be informed about the absence of full safety data for the vaccine in breastfeeding.

Can children receive the vaccine?

SARS-CoV-2 vaccine trials have only just begun in children, and therefore there are very limited data on safety and immunogenicity in this group. Children and young people have a very low risk of severe disease or death due to SARS-CoV-2 compared to adults and COVID-19 vaccines are not routinely recommended for children and young people under 16 years of age.

There are currently very limited data on clinical risk factors in childhood, but children with neurological comorbidities are over-represented in those who develop severe COVID-19 requiring intensive care and those who die of COVID-19. Given the increased risk of exposure to infection and outbreaks in institutional settings, vaccination may be considered for children with serious neuro-disabilities (including cerebral palsy, severe autism and Down’s syndrome) who spend regular time in institutional settings. As there are limited data on the use of COVID-19 vaccines in children, vaccination should be mainly restricted to older children (for example, those aged 12 years and older), who have higher risk of acquiring and becoming sick from infection. As this would be outside the terms of the MHRA approval, this would be considered unlicensed use and individuals and their parents/carers should be informed.

Recommendations on vaccinating children with other underlying conditions will be reviewed after the initial roll-out phase, by which time additional data on use of the vaccines in adults should allow a better assessment of risks and benefits.

Can someone with immunosuppression and HIV receive the vaccine?

Individuals who have immunosuppression and HIV infection (regardless of CD4 count) should be given COVID vaccine in accordance with the recommendations and contraindications stated in the PGD and the Green Book COVID-19 chapter. These individuals may not make a full antibody response and should therefore continue to follow advice to avoid exposure unless they are advised otherwise by their doctor.

The small number of patients who are about to receive planned immunosuppressive therapy should be considered for vaccination prior to commencing therapy (ideally at least two weeks before), when their immune system is better able to make a response. Where possible, it would also be preferable for the two-dose schedule to be completed prior to commencing immunosuppression. This would entail offering the second dose at the recommended minimum for that vaccine (three or four weeks from the first dose) to provide maximum benefit that may not be received if the second dose was given during the period of immunosuppression. Any decision to defer immunosuppressive therapy or to delay possible benefit from vaccination until after therapy should not be taken without due consideration of the risks from COVID-19 and from their underlying condition.

Can someone with a history of COVID-19 disease receive the vaccine?

People currently unwell and experiencing COVID-19 symptoms should not receive COVID-19 vaccine until they have recovered. This is to avoid wrongly attributing any new symptom or the progression of symptoms to the vaccine. As deterioration in some people with COVID-19 can occur up to two weeks after infection, ideally vaccination should be deferred until they have recovered and at least four weeks after onset of symptoms or four weeks from the first PCR positive specimen in those who are asymptomatic.

There is no evidence from clinical trials of any safety concerns from vaccinating individuals with a past history of COVID-19 infection, or with detectable COVID-19 antibody so people who have had COVID-19 disease (whether confirmed or suspected) can still receive COVID-19 vaccine. This is because it is not known how long antibodies made in response to natural infection persist and whether immunisation
could offer more protection. If antibodies have already been made to the disease following natural infection, receiving COVID-19 vaccine would be expected to boost any pre-existing antibodies.

Can someone experiencing prolonged COVID-19 symptoms (‘Long COVID’) receive the vaccine?

Having prolonged COVID-19 symptoms is not a contraindication to receiving COVID-19 vaccine but if there is evidence of current deterioration, deferral of vaccination may be considered to avoid incorrect attribution of any change in the person’s underlying condition to the vaccine.

Is there a time interval between treatments for COVID-19 disease (for example dexamethasone, convalescent plasma, monoclonal antibody or antiviral medicines) and vaccine administration?

Dexamethasone is a steroid treatment given to patients experiencing severe COVID-19 symptoms to suppress the immune response and reduce inflammation.

Convalescent plasma is a preparation of pooled antibodies taken from people who have recently recovered from COVID-19. The antibodies bind to the surface of the SARS-CoV-2 virus and stop it from attaching to the body’s cells and replicating further.

Monoclonal antibody treatment works in the same way as convalescent plasma but is a specific preparation containing two specific man-made antibodies.

As the currently authorised COVID-19 vaccines are non-live vaccines, it is not anticipated that these treatments would contraindicate the vaccine. Although, theoretically, high levels of antibodies in the convalescent plasma could interfere with the immune response to the vaccine. Passively acquired antibodies from the plasma treatment are not thought to persist for long, so by the time a person who has received this is well enough to receive a COVID-19 vaccination, these antibodies are likely to have gone.

Antivirals prevent the further replication of viruses. As neither of the above mentioned COVID-19 vaccines contain live virus, response to the vaccine will not be affected by prior or recent receipt of anti-viral medication.

Can individuals with a bleeding disorder receive the COVID-19 vaccine?

Individuals with a bleeding disorder that would contraindicate intramuscular injection, should not be given the vaccine unless the potential benefit clearly outweighs the risk of administration.

Individuals with bleeding disorders may be vaccinated intramuscularly if, in the opinion of a doctor familiar with the individual’s bleeding risk, vaccines or similar small volume intramuscular injections can be administered with reasonable safety by this route. If the individual receives medication/treatment to reduce bleeding, for example treatment for haemophilia, intramuscular vaccination can be scheduled shortly after such medication/treatment is administered. A fine needle (23 or 25 gauge) should be used for the vaccination, followed by firm pressure applied to the site (without rubbing) for at least two minutes*. The individual/carer should be informed about the risk of haematoma from the injection.

Can individuals taking anticoagulants receive the COVID-19 vaccine?

Individuals receiving anticoagulant therapy that would contraindicate intramuscular injection, should not be given the vaccine unless the potential benefit clearly outweighs the risk of administration. Individuals on stable anticoagulation therapy, including individuals on warfarin who are up-to-date with their scheduled INR testing and whose latest INR was below the upper threshold of their therapeutic range, can receive intramuscular vaccination. If in any doubt, consult with the clinician responsible for prescribing or monitoring the individual’s anticoagulant therapy.

COVID-19 vaccines

In the UK, three COVID-19 vaccines have been approved by MHRA for use within the UK national vaccination programme. These are the COVID-19 mRNA Vaccine BNT162b2 (manufactured by Pfizer-BioNTech), COVID-19 Vaccine Moderna and COVID-19 vaccine AstraZeneca. Information about other COVID-19 vaccines which are given regulatory approval will be added when this occurs.

The COVID-19 mRNA Vaccine BNT162b2 and COVID-19 Vaccine Moderna use an mRNA platform and the COVID-19 vaccine AstraZeneca is an adenovirus vector vaccine.

All the currently authorised vaccines are presented in multi-dose vials and require completion of a two-dose course. Using multi-dose vials can improve the efficiency of vaccine manufacture and distribution, enabling vaccine availability for those eligible at the earliest opportunity.

COVID-19 mRNA Vaccine BNT162b2 (Pfizer-BioNTech) and COVID-19 Vaccine Moderna

The COVID-19 mRNA Vaccine BNT162b2 and COVID-19 Vaccine Moderna are mRNA (messenger ribonucleic acid) vaccines. They contain the genetic sequence (mRNA) for the spike protein which is found on the surface of the SARS-CoV-2 virus, wrapped in a lipid envelope (referred to as a nanoparticle) to enable it to be transported into the cells in the body.

When injected, the mRNA is taken up by the host’s cells which translate the genetic information and produce the spike proteins. These are then displayed on the surface of the cell. This stimulates the immune system to produce antibodies and activate T-cells which prepare the immune system to respond to any future exposure to the SARS-CoV-2 virus by binding to and disabling any virus encountered.

As there is no whole or live virus involved, the vaccine cannot cause disease. The mRNA naturally degrades after a few days.

How do we know the COVID-19 mRNA Vaccine BNT162b2 is safe?

During clinical trials, local reactions at the injection site were found to be fairly common after vaccination with the COVID-19 mRNA Vaccine BNT162b2. Over 80% of trial participants reported pain at the injection site. This occurred within seven days after the injection and resolved after a few days.

The safety of COVID-19 mRNA Vaccine BNT162b2 was also evaluated in participants 16 years of age and older in two clinical studies conducted in the United States, Europe, Turkey, South Africa, and South America. The most frequent adverse reactions in participants 16 years of age and older were pain at the injection site (> 80%), fatigue (> 60%), headache (> 50%), myalgia (> 30%), chills (> 30%), arthralgia (> 20%) and pyrexia (> 10%) and were usually mild or moderate in intensity and resolved within a few days after vaccination. If required, symptomatic treatment with analgesic and/or anti-pyretic medicinal products (eg paracetamol-containing products) may be used. Further
information can be found in the Information for Healthcare Professionals on Pfizer/BioNTech COVID-19 Vaccine.

How do we know the COVID-19 mRNA Vaccine BNT162b2 is effective?
The immunogenicity of the COVID-19 mRNA Vaccine BNT162b2 has been evaluated in clinical trials in six countries: US, Germany, Brazil, Argentina, South Africa and Turkey.

Over 44,000 participants have taken part in the clinical trials of this vaccine. Half of the participants received the COVID-19 vaccine and the other half received a placebo vaccine. Results from the phase three clinical trials suggested the vaccine can prevent 95% of vaccinated adults from getting COVID-19 disease and that the vaccine works equally well in people of all ages, races and ethnicities. The observed efficacy in adults over 65 years of age was over 94%.

How do we know the COVID-19 Vaccine Moderna is safe?
The safety of COVID-19 Vaccine Moderna was evaluated in ongoing phase 3 clinical trials in the United States involving 30,351 participants 18 years of age and older.

The most frequently reported adverse reactions were injection site pain (92%), fatigue (70%), headache (65%), myalgia (62%), arthralgia (46%), chills (46%), nausea/vomiting (23%), auxillary swelling/tenderness (19.8%), fever (15.5%), injection site swelling (14.7%) and redness (10%). Adverse reactions were usually mild or moderate in intensity and resolved within a few days after vaccination.

There were two serious adverse events of facial swelling in vaccine recipients with a history of injection of dermatological fillers.

How do we know the COVID-19 Vaccine Moderna is effective?
The immunogenicity of the COVID-19 Vaccine Moderna has been evaluated in clinical trials in the United States with over 30,000 participants. In phase 1 testing of the Moderna mRNA-1273 vaccine, all patients seroconverted to IgG after the first dose of vaccine. Phase 3 placebo controlled testing in participants, showed a vaccine efficacy of 94.1%. Efficacy was similar in those over 65 years. Vaccine efficacy against severe COVID-19 was 100%. The cumulative case numbers in the phase 3 study showed a clear divergence between the vaccine and placebo groups from about 14 days days after the first dose.

COVID-19 Vaccine AstraZeneca
COVID-19 Vaccine AstraZeneca is a viral vector vaccine that uses a weakened adenovirus as a carrier to deliver the SARS-CoV-2 antigen. The adenovirus has been modified so that it cannot replicate (grow and multiply by making copies of itself) in human cells and therefore cause any disease. The genes that encode for the spike protein on the SARS-CoV-2 virus have been inserted into the adenovirus's genetic code to make the vaccine. When the vaccine is injected, it enters the host’s cells, which then manufacture the spike protein. This then stimulates the immune system, which reacts by producing antibodies and memory cells to the SARS-CoV-2 virus without causing disease.

How do we know the COVID-19 Vaccine AstraZeneca is safe?
The overall safety of COVID-19 Vaccine AstraZeneca is based on an interim analysis of pooled data from four clinical trials conducted in the United Kingdom, Brazil, and South Africa. At the time of analysis, 12,021 participants received at least one dose of COVID-19 Vaccine AstraZeneca.
Reactions reported were similar to those seen following other vaccines and there were no serious adverse reactions to the vaccines seen in the trial participants who received them. The most frequently reported adverse reactions were injection site tenderness (>60%), injection site pain, headache, fatigue (>50%), myalgia, malaise (>40%), pyrexia, chills (>30%), and arthralgia, nausea (>20%). These symptoms were usually mild or moderate in intensity and resolved within a few days after vaccination. Further information can be found in the Information for Healthcare Professionals on Covid-19 Vaccine AstraZeneca at www.gov.uk/government/publications/regulatory-approval-of-covid-19-vaccine-astrazeneca/information-for-healthcare-professionals-on-covid-19-vaccine-astrazeneca

A recently recognised condition involving serious thromboembolic events accompanied by thrombocytopenia has been reported after AstraZeneca vaccination (see Precautions to COVID-19 vaccines on page 13).

For more information, see https://www.publichealth.hscni.net/publications/covid-19-astrazeneca-vaccine-and-very-rare-blood-clots COVID-19 AstraZeneca vaccine and very rare blood clots | HSC Public Health Agency (hscni.net)

How do we know the COVID-19 Vaccine AstraZeneca is effective?
Prior to approval by the MHRA, manufacturers of the COVID-19 vaccines need to show evidence that they will be effective. They can do this by showing a reduction in virus levels in animal studies where the vaccines were used and that people in the trials have made an antibody response to the vaccine. COVID-19 Vaccine AstraZeneca elicited increased neutralisation antibodies in Rhesus macaques as well as a reduction in detectable virus in the lower respiratory tract following challenge with SARS-CoV-2.

Final data in human trials showed that IgG spike antibody responses and neutralising antibody 28 days after the booster dose were similar across the three age cohorts (18–55 years, 56–69 years and ≥70 years). More than 99% (208/209) of the participants had neutralising antibody responses two weeks after the booster dose. In analysis of over 11,000 patients in the phase 3 clinical trials, overall vaccine efficacy against symptomatic disease was 70.4%. High protection against hospitalisation was seen from 21 days after the first dose until two weeks after the second dose, suggesting that a single dose will provide high short-term protection against severe disease.

Can a different vaccine be used for the 2nd dose?
There is no evidence as to the interchangeability of the different COVID-19 vaccines although studies are underway. Therefore, every effort should be made to determine which vaccine the individual received and to complete with the same vaccine.

For individuals who started the schedule and who attend for vaccination at a site where the same vaccine is not available, or where the first product received is unknown, it is reasonable to offer a single dose of the locally available product. This option is preferred if that individual is likely to be at immediate high risk or is considered unlikely to attend again. In these circumstances, as all currently available vaccines are based on the spike protein of the virus, it is likely that the second dose will help to boost the response to the first dose.

Further doses of vaccine are not required unless additional information becomes available.

Can the vaccine be administered with other inactivated or live vaccines?
Although no data for co-administration of COVID-19 vaccine with other vaccines exists, in the absence of such data, first principles would suggest that interference between inactivated vaccines with different
antigenic content is likely to be limited. Based on experience with other vaccines, any potential interference is most likely to result in a slightly attenuated (weaker) immune response to one of the vaccines. There is no evidence of any safety concerns, although it may make the attribution of any adverse events more difficult.

Because of the absence of data on co-administration with COVID-19 vaccines, COVID-19 vaccine should not be routinely offered at the same time as other vaccines. Based on current information about the first COVID-19 vaccines which may be used, scheduling of COVID-19 vaccine and other vaccines should ideally be separated by an interval of at least seven days to avoid incorrect attribution of potential adverse events.

As all the currently authorised vaccines are inactivated, where individuals in an eligible cohort present having received another inactivated or live vaccine, COVID-19 vaccination should still be considered. The same applies for other live and inactivated vaccines where COVID-19 vaccination has been received first. In many cases, vaccination should proceed to avoid any further delay in protection and to avoid the risk of the patient not returning for a later appointment. In such circumstances, patients should be informed about the likely timing of potential adverse events relating to each vaccine.

Inadvertent vaccine administration errors

Does the vaccine dose need to be repeated if only the diluent is administered?

The diluent for the COVID-19 mRNA Vaccine BNT162b2 is sodium chloride, which is purified water with a very small amount of salt in it. This diluent is commonly used to dilute other medicines and no adverse reactions would be expected if it was inadvertently administered alone. However, the diluent alone will not evoke an immune response so the person should be given a dose of properly reconstituted COVID-19 mRNA Vaccine BNT162b2 as soon as the error is realised.

What should you do if you inadvertently administer the whole multi-dose vial of vaccine instead of the recommended dose?

In a Phase I/II study of COVID-19 mRNA vaccines in adults, different strength doses of COVID-19 mRNA Vaccine BNT162b2 were given. This means that some people in the trials have already received higher doses of a similar vaccine (BNT162b1) than the currently recommended dose. The trial showed that although a stronger dose was not harmful, the recipients experienced more local reactions with very painful arms being reported.

If a person is given more than the recommended dose, they should be reassured that this is not harmful but that they may be more likely to experience pain in their injected arm. The second dose of vaccine should still be given as per the recommended schedule.

What should you do if you inadvertently administer an over-diluted vaccine?

As the amount of active content in a dose of over-diluted vaccine will be less, the vaccine dose should be repeated as soon as the error is realised using a correctly reconstituted vaccine.

What should you do if the second dose is given at less than the minimum recommended interval?

If the second dose of the COVID-19 mRNA Vaccine BNT162b2 is given less than 19 days after the first dose, the dose should be discounted and another dose (a third dose) should be given at least 21 days after the dose given too early. The 19 day interval is the minimum interval that was used in the clinical trials.

If the second dose of the AstraZeneca or Moderna COVID-19 vaccine is given at less than the recommended 28 day interval, but at least 21 days after the first dose, it does not need to be
repeated. If the second dose is given less than 21 days after the first, it should be discounted and another dose (a third dose) should be given at least 28 days after the dose given too early, up to an interval of 12 weeks.

What should you do if longer than recommended interval is left between doses?
If an interval longer than the recommended interval is left between doses, the second dose should still be given (preferably using the same vaccine as was given for the first dose if possible). The course does not need to be restarted.

What if a different COVID-19 vaccine is given for second dose than was given for first dose?
There is no evidence on the interchangeability of the COVID-19 vaccines although studies are underway. Therefore, every effort should be made to determine which vaccine the individual received and to complete the course with the same vaccine.

However, as all of the vaccines discussed in this document are based on the spike protein, it is likely that even if the vaccine given for the second dose is different to the first, it will help to boost the response to the first dose. For this reason, until additional information becomes available, further doses are not required.

COVID-19 vaccine contraindications
COVID-19 vaccine should not be given to those who have had a previous systemic allergic reaction (including immediate-onset anaphylaxis) to:

- a previous dose of the same COVID-19 vaccine
- any components of the vaccine.

The COVID-19 chapter of the Green Book also provides full details about the contraindications to COVID-19 vaccine. Where there is any doubt as to whether the vaccine can be given, appropriate advice should be sought from the relevant specialist in the first instance.

A very small number of individuals have experienced anaphylaxis when vaccinated with the Pfizer BioNTech vaccine and anaphylaxis events have also been reported after the Moderna vaccine. Following close national surveillance, the MHRA is no longer advising that individuals with a history of anaphylaxis to any vaccine, medicine or food do not get the vaccine. Anyone with a previous history of allergic reactions to the ingredients of the vaccine should not receive it, but those with any other allergies (such as a food allergy) can now have the vaccine. Please refer to the table on page 17 in the Green Book COVID-19 vaccine chapter.

Polyethylene glycol (PEG)
The Pfizer BioNTech and Moderna mRNA vaccines contain polyethylene glycol (PEG). PEGs (also known as macrogols) are a group of known allergens commonly found in medicines, many household products and cosmetics. Medicines containing PEG include some tablets, laxatives, depot steroid injections, and some bowel preparations used for colonoscopy. Known allergy to PEG is rare but would contraindicate receipt of the Pfizer BioNTech and Moderna vaccines. It is unclear whether PEG is the only cause of allergic reactions in patients with systemic allergic symptoms after the first dose of these vaccines.

Polysorbate 80
The AstraZeneca vaccine does not contain PEG but does contain a related compound called polysorbate 80. Some people with PEG allergy may also be allergic to polysorbate 80. However, polysorbate 80 is widely used in medicines and foods, and is present in many medicines including monoclonal antibody preparations. Some injected influenza vaccines (including the main vaccine used in over 65 year olds) contain polysorbate 80. Individuals who have tolerated injections that contain polysorbate 80 (such as certain influenza vaccines) are likely to tolerate the AstraZeneca vaccine. Please see table 4 on page 17 in the Green Book COVID-19 vaccine chapter.

Thrombosis and thrombocytopenia occurring after COVID-19 AstraZeneca vaccination
A recently recognised condition involving serious thromboembolic events accompanied by thrombocytopaenia, has been reported after AstraZeneca vaccination.

The condition is very rare, tends to present with unusual forms of clotting and the mechanism is believed to be an idiosyncratic reaction related to an immune response to the AstraZeneca vaccine. Because of this likely immune mechanism, there is no reason to believe that individuals with a past history of clots or of certain thrombophilic conditions would be at increased risk of this very rare condition.

The contraindications to vaccination with the AstraZeneca COVID-19 vaccine have now been amended to include individuals who have a history of a previous episode of heparin-induced thrombocytopaenia and thrombosis (HITT or HIT type 2). These individuals may be offered vaccination with an alternative COVID-19 vaccine.

Individuals who experience a clotting episode with concomitant thrombocytopaenia following the first dose of AstraZeneca vaccine should be properly assessed. If they are considered to have the reported condition, further vaccination should be deferred until their clotting has completely stabilised, and they should then be considered for a second dose of an alternative product. Based on the analogy of HITT, antibodies to platelet factor 4 may persist for around six months.

Individuals who have received the first dose of AstraZeneca vaccine without developing this rare condition are advised to receive the second dose of the same vaccine at the currently recommended interval of around 12 weeks. To date, there have been no confirmed cases of this condition after the second dose and the rate of other reactions is lower at the second dose than after the first dose of this vaccine. Using an alternative product for the second dose may be more likely to lead to common side effects.

Based on current evidence JCVI is advising a preference for an alternative vaccine for healthy people under 40 years of age, including health and social care workers, unpaid carers and household contacts of immunosuppressed individuals.
Individuals with past clotting episodes and those diagnosed with thrombophilia, whether or not they are on long-term anti-coagulation, remain at risk of COVID-19 disease. There is no evidence that those with a prior history of thrombosis or known risk factors for thrombosis are more at risk of developing this immune-mediated condition of thrombosis in combination with thrombocytopaenia after the AstraZeneca vaccine.

For most of these individuals, the risk of recurrent thrombosis due to COVID-19 infection, remains far greater than the risk of this syndrome. Therefore individuals with such a history should be vaccinated with any of the available vaccines (provided they are not otherwise contra-indicated). The same consideration applies to those who experience common clotting episodes after the first dose of AstraZeneca vaccine but without concomitant thrombocytopaenia.

For further information, see https://www.publichealth.hscni.net/publications/blood-clotting-following-covid-19-vaccination-information-health-professionals

Precautions to COVID-19 vaccines

Other precautions

It is recommended that individuals are observed for a minimum of 15 minutes following administration of the Pfizer BioNTech and Moderna vaccines. There is no requirement for 15 minutes observation following the AstraZeneca vaccine. However, as fainting can occur following vaccination, all those vaccinated with any of the COVID-19 vaccines should either be driven by someone else or should not drive for 15 minutes after vaccination.

Patients with undiagnosed PEG allergy often have a history of immediate onset-unexplained anaphylaxis or anaphylaxis to multiple classes of drugs or an unexplained anaphylaxis. Such individuals should not be vaccinated with the Pfizer BioNTech or Moderna vaccine, except on the expert advice of an allergy specialist. The AstraZeneca vaccine can be used as an alternative (unless otherwise contraindicated), particularly if they previously tolerated an injected influenza vaccine. The vaccine should be administered in a setting with full resuscitation facilities (e.g. a hospital), and a 30 minute observation period is recommended.

The British Society for Allergy and Clinical Immunology (BSACI) has advised that individuals who have a reaction to the first dose of a COVID-19 vaccine may be able to receive a 2nd dose of vaccine. Please see the flowchart for managing patients who have allergic reactions to the first dose of COVID-19 vaccine on page 18 in the Green Book COVID-19 vaccine chapter for further information.

Individuals with non-allergic reactions (vasovagal episodes, non-urticarial skin reaction or non-specific symptoms) to the first dose of a COVID-19 vaccine can receive the second dose of vaccine in any vaccination setting.

Further information can be found on the Resuscitation Council UK publishes, including hypersensitivity to the active substance or to any of the excipients, anaphylaxis guidance for vaccination settings | Resuscitation Council UK

Minor illnesses without fever or systemic upset are not valid reasons to postpone immunisation. If an individual is acutely unwell, immunisation may be postponed until they have fully recovered. This is to avoid confusing the differential diagnosis of any acute illness (including COVID-19) by wrongly attributing any signs or symptoms of the illness as being possible reactions to the vaccine.
Useful links
Northern Ireland COVID-19 Vaccination Programme:

Northern Ireland COVID-19 - Daily Dashboard Updates:
www.health-ni.gov.uk/articles/covid-19-daily-dashboard-updates

Green Book COVID-19 chapter:

Public Health England Coronavirus resources: www.gov.uk/government/collections/immunisation

GOV.UK Coronavirus (COVID-19) in the UK: https://coronavirus.data.gov.uk/

WHO COVID-19 Worldwide Dashboard:
https://covid19.who.int/?gclid=EAIaIQobChMIr6P36Dc7AIVBWHmCh3IslwIXEAAYASAEgIPT_D_BwE

LSHTM COVID-19 vaccine tracker: https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/

Royal College of Nursing. Immunisation services and large-scale vaccination delivery during COVID-19:

Royal College of Nursing - COVID-19 vaccination page:
www.rcn.org.uk/clinical-topics/public-health/immunisation/covid-19-vaccination

Product information for the COVID-19 mRNA Vaccine BNT162b2:
Information for Healthcare Professionals on Pfizer/BioNTech COVID-19 Vaccine

Vaccination, helping to protect those most vulnerable.

If you need more information on the COVID-19 vaccination please visit: www.nidirect.gov.uk/covid-vaccine

© Crown Copyright 2021.
This information was originally developed by Public Health England and is used under the Open Government Licence v3.0